Batterien - Energie in Dosen
Materialbedarf
Anz. | Bezeichnung | Datenblatt |
2 | Batterie/Spannungsquelle 9V | |
2 | Widerstand 470 Ohm | |
1 | Widerstand 1,0 kOhm | |
2 | Diode 1N4001 (1N4001-1N4007) |
![]() |
1 | Standard-Leuchtdiode 3mm oder 5mm |
![]() ![]() |
1 | Multimeter |
Grundlagen
Immer, wenn Geräte transportabel gestaltet werden sollen, muss man meist auf Batterien oder Akkus zurück greifen. Wir alle kennen die Verwendung dieser Energiezellen aus dem Alltag. Sei es in der Fernbedienung, im Taschenrechner oder im Kinderspielzeug. Es ist den meisten kein Geheimnis mehr, wie man Batterien verwendet.
Aber so trivial der Einsatz auch sein mag, so gibt es doch eine Reihe Punkte, die zu beachten sind, wenn man eine Schaltung für Batteriebetrieb auslegen möchte.
Als Erstes gibt es etliche verschiedene
Batterieformen auf dem Markt. Da wären z.B. die Rundzellen wie Mono, Baby oder
Mignon, dann gibt es so genannte Knopfbatterien und als Weiteres sei hier die
Blockbatterien wie unsere 9V-Batterie zu erwähnen. Es existieren auch eine ganze
Menge weiterer Spezial-Batterien wie Laternen-Batterien oder Foto-Batterien. Die
gängigsten Batterieformen wurden einmal in der
Tabelle zusammen gestellt. In diesem Lehrgang
befassen wir uns aber, wie üblich, mit der 9V-Blockbatterie. Die hier
aufgeführten Verhaltensweisen können auf die anderen Typen übertragen werden.
Dementsprechend gibt es auch 2 Schaltzeichen. Eines für eine einzelne Batterie oder ein Zeichen, wenn ein Batteriepaket verwendet werden soll. |
(Keine) unendliche Energie
Woraus besteht dieser? Man kann sich eine Batterie in 2 Teilen vorstellen. Zum Einen enthält die Batterie eine Spannungsquelle, welche theoretisch unendlich viel Strom liefern kann. Dazu in Reihe geschaltet, wird der Innenwiderstand. Dieser beträgt bei einer 9V-Batterie nur wenige Ohm. Da wir aber was 'Handfestes' haben wollen, schalten wir noch einen weiteren Widerstand in Reihe um den Effekt des Innenwiderstandes zu simulieren. Wir haben nun eine unbelastete Batterie, welche 9V abgibt. Das Multimeter wird dies bestätigen. Da hier kein Strom fließt, fällt auch keine Spannung am Ri ab und somit messen wir die komplette Batteriespannung. Jetzt belasten wir aber mal unsere Batterie ... |
Da der wirkliche Innenwiderstand der Batterie erheblich geringer ist, würde die Spannung direkt an der Batterie nur geringfügig einbrechen. |
Der Innenwiderstand wird enttarnt
Möchte man wissen, wie hoch der Innenwiderstand einer Batterie derzeit nun wirklich ist, so kann man diesen ja nicht einfach direkt messen. Also bitte nicht auf die folgende Idee kommen: Niemals im Ohm-Messbereich versuchen, den Innenwiderstand der Batterie zu ermitteln. Dies könnte unter Umständen das Messgerät zerstören. Auch ein Auseinander nehmen der Batterie wird da nicht helfen. Dieser Widerstand ist ja physisch nicht wirklich vorhanden. Wie erhalten wir denn jetzt diesen Wert? Hierzu benötigen wir insgesamt 4 Werte. Einmal den Strom und die Batteriespannung bei geringer Belastung und einmal Strom und Batteriespannung bei höherer Belastung. Die beiden Spannungen haben wir ja bereits. Es wurden da, z.B., folgende Werte ermittelt. U0=9,1V (Unbelastete Batterie) und U1=5,5V (Mit LED+R1). Was noch fehlt sind die beiden Ströme. Der Strom bei unbelasteter Batterie sollte wohl klar sein. Jetzt messen wir noch den Strom bei angeschlossener LED und erhalten, in unserem Beispiel, einen Wert von 7,7 mA. Der Rest ist nun reine Mathematik. Wir müssen von den Strömen und den Spannungen dann nur noch die Differenzen bilden und anschließend kommt das ohmsche Gesetz wieder zum Einsatz. Und siehe da: Hier wird ein Wert von 467 Ohm errechnet und damit haben wir den Innenwiderstand. Dieser Wert ist aber leider temporär. Dies bedeutet, dass der Widerstand im Laufe des Batterielebens immer weiter steigt. Er ist aber ein guter Anhaltspunkt um festzustellen, mit welchen Strom man die Batterie belasten kann, so, dass der Spannungseinbruch noch vertretbar ist. |
Wird fortgesetzt ...